181 research outputs found

    Non-Equipartition of Energy, Masses of Nova Ejecta, and Type Ia Supernovae

    Get PDF
    The total masses ejected during classical nova eruptions are needed to answer two questions with broad astrophysical implications: Can accreting white dwarfs be pushed towards the Chandrasekhar mass limit to yield type Ia supernovae? Are Ultra-luminous red variables a new kind of astrophysical phenomenon, or merely extreme classical novae? We review the methods used to determine nova ejecta masses. Except for the unique case of BT Mon (nova 1939), all nova ejecta mass determinations depend on untested assumptions and multi-parameter modeling. The remarkably simple assumption of equipartition between kinetic and radiated energy (E_kin and E_rad, respectively) in nova ejecta has been invoked as a way around this conundrum for the ultra-luminous red variable in M31. The deduced mass is far larger than that produced by any classical nova model. Our nova eruption simulations show that radiation and kinetic energy in nova ejecta are very far from being in energy equipartition, with variations of four orders of magnitude in the ratio E_kin/E_rad being commonplace. The assumption of equipartition must not be used to deduce nova ejecta masses; any such "determinations" can be overestimates by a factor of up to 10,000. We data-mined our extensive series of nova simulations to search for correlations that could yield nova ejecta masses. Remarkably, the mass ejected during a nova eruption is dependent only on (and is directly proportional to) E_rad. If we measure the distance to an erupting nova and its bolometric light curve then E_rad and hence the mass ejected can be directly measured.Comment: 9 pages, 4 figures, awaiting publication in ApJ

    Open String Moduli in KKLT Compactifications

    Full text link
    In the Kachru-Kallosh-Linde-Trivedi (KKLT) de-Sitter construction one introduces an anti-D3-brane that breaks the supersymmetry and leads to a positive cosmological constant. In this paper we investigate the open string moduli associated with this anti-D3-brane, corresponding to its position on the 3-sphere at the tip of the deformed conifold. We show that in the KKLT construction these moduli are very light, and we suggest a possible way to give these moduli a large mass by putting orientifold planes in the KKLT "throat".Comment: harvmac, 22 page

    WISeREP - An Interactive Supernova Data Repository

    Full text link
    We have entered an era of massive data sets in astronomy. In particular, the number of supernova (SN) discoveries and classifications has substantially increased over the years from few tens to thousands per year. It is no longer the case that observations of a few prototypical events encapsulate most spectroscopic information about SNe, motivating the development of modern tools to collect, archive, organize and distribute spectra in general, and SN spectra in particular. For this reason we have developed the Weizmann Interactive Supernova data REPository - WISeREP - an SQL-based database (DB) with an interactive web-based graphical interface. The system serves as an archive of high quality SN spectra, including both historical (legacy) data as well as data that is accumulated by ongoing modern programs. The archive provides information about objects, their spectra, and related meta-data. Utilizing interactive plots, we provide a graphical interface to visualize data, perform line identification of the major relevant species, determine object redshifts, classify SNe and measure expansion velocities. Guest users may view and download spectra or other data that have been placed in the public domain. Registered users may also view and download data that are proprietary to specific programs with which they are associated. The DB currently holds >8000 spectra, of which >5000 are public; the latter include published spectra from the Palomar Transient Factory, all of the SUSPECT archive, the Caltech-Core-Collapse Program, the CfA SN spectra archive and published spectra from the UC Berkeley SNDB repository. It offers an efficient and convenient way to archive data and share it with colleagues, and we expect that data stored in this way will be easy to access, increasing its visibility, usefulness and scientific impact.Comment: To be published in PASP. WISeREP: http://www.weizmann.ac.il/astrophysics/wiserep

    The Red Nova-like Variable in M31 - A Blue Candidate in Quiescence

    Full text link
    M31-RV was an extraordinarily luminous (~10^6 Lsun) eruptive variable, displaying very cool temperatures (roughly 1000 Kelvins) as it faded. The photometric behavior of M31-RV (and several other very red novae, i.e. luminous eruptive red variables) has led to several models of this apparently new class of astrophysical object. One of the most detailed models is that of "mergebursts": hypothetical mergers of close binary stars. These are predicted to rival or exceed the brightest classical novae in luminosity, but to be much cooler and redder than classical novae, and to become slowly hotter and bluer as they age. This prediction suggests two stringent and definitive tests of the mergeburst hypothesis. First, there should always be a cool red remnant, and NOT a hot blue remnant at the site of such an outburst. Second, the inflated envelope of a mergeburst event should be slowly contracting, hence it must display a slowly rising effective temperature. We have located a luminous, UV-bright object within 0.4 arcsec (1.5 sigma of the astrometric position) of M31-RV in archival WFPC2 images taken 10 years after the outburst: it resembles an old nova. Twenty years after the outburst, the object remains much too hot to be a mergeburst. Its behavior remains consistent with that of theoretical nova models which erupt on a low mass white dwarf. Future Hubble UV and visible images could determine if the M31-RV analogs (in M85 and in M99) are also behaving like old novae.Comment: Accepted for publication in ApJ, comments welcom

    Inhibitory NK Receptor Recognition of HLA-G: Regulation by Contact Residues and by Cell Specific Expression at the Fetal-Maternal Interface

    Get PDF
    The non-classical HLA-G protein is distinguished from the classical MHC class I molecules by its expression pattern, low polymorphism and its ability to form complexes on the cell surface. The special role of HLA-G in the maternal-fetal interface has been attributed to its ability to interact with specific receptors found on maternal immune cells. However this interaction is restricted to a limited number of receptors. In this study we elucidate the reason for this phenomenon by comparing the specific contact residues responsible for MHC-KIR interactions. This alignment revealed a marked difference between the HLA-G molecule and other MHC class I molecules. By mutating these residues to the equivalent classical MHC residues, the HLA-G molecule regained an ability of interacting with KIR inhibitory receptors found on NK cells derived either from peripheral blood or from the decidua. Functional NK killing assays further substantiated the binding results. Furthermore, double immunofluorescent staining of placental sections revealed that while the conformed form of HLA-G was expressed in all extravillous trophoblasts, the free heavy chain form of HLA-G was expressed in more distal cells of the column, the invasion front. Overall we suggest that HLA-G protein evolved to interact with only some of the NK inhibitory receptors thus allowing a control of inhibition, while permitting appropriate NK cell cytokine and growth factor production necessary for a viable maternal fetal interface

    An Extended Grid of Nova Models. III. Very Luminous, Red Novae

    Full text link
    Extremely luminous, red eruptive variables like RV in M31 are being suggested as exemplars of a new class of astrophysical object. Our greatly extended series of nova simulations shows that classical nova models can produce very red, luminous eruptions. In a poorly studied corner of 3-D nova parameter space (very cold, low-mass white dwarfs, accreting at very low rates) we find bona fide classical novae that are very luminous and red because they eject very slowly moving, massive envelopes. A crucial prediction of these nova models - in contrast to the predictions of merging star ("mergeburst") models - is that a hot remnant, the underlying white dwarf, will emerge after the massive ejected envelope has expanded enough to become optically thin. This blue remnant must fade on a timescale of decades - much faster than a "mergeburst", which must fade on timescales of millennia or longer. Furthermore, the cooling nova white dwarf and its expanding ejecta must become redder in the years after eruption, while a contracting mergeburst must become hotter and bluer. We predict that red novae will always brighten to L~1000 Lsun for about 1 year before rising to maximum luminosity at L~10^6 - 10^7 Lsun. The maximum luminosity attainable by a nova is likely to be L~10^7 Lsun, corresponding to M-12. In an accompanying paper we describe a fading, luminous blue candidate for the remnant of M31-RV; it is observed with HST to be compatible only with the nova model.Comment: Accepted for publication in ApJ. Comments welcom
    • …
    corecore